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Abstract
The Villain transform plays a key role in spin-wave theory, a bosonization
of elementary excitations in a system of extensively many Heisenberg spins.
Intuitively, it is a representation of the spin operators in terms of an angle
and its canonically conjugate angular momentum operator and, as such, has
a few nasty boundary-condition twists. We construct an isometric phase
representation of spin operators that conveys a precise mathematical meaning
to the Villain transform and is related to both classical mechanics and the
Pegg–Barnett–Bialynicki-Birula boson (photon) phase operators by means of
suitable limits. In contrast to the photon case, unitary extensions are inadequate
because they describe the wrong physics. We also discuss in some detail the
application to spin-wave theory, pointing out some examples in which the
isometric representation is indispensable.

PACS numbers: 03.65, 03.70, 02.30, 42.50

1. Introduction

The Villain transform [1] is a representation of the quantum spin operators in terms of an
angle (phase) and its canonically conjugate angular momentum operator. It is a mainstay to
spin-wave theory and related to a phase representation of creation and annihilation operators
of bosons (photons) introduced by Bialynicki-Birula [2], as explained below.

In classical physics a localized or convergent light beam is obtained by superposing plane
waves with well-defined phase relations. Since Dirac’s 1927 paper [3], this basic role of
the phase has not ceased to motivate the search for a unitary phase operator ‘eiϕ’ in quantum
mechanics [2–5]. Recent rigorous work [6] on the interaction of N-level atoms with a quantized
electromagnetic field has clarified the relationship between the phase operator and the classical
limit of the field under which a suitably defined average number of photons tends to infinity
while the photon density remains fixed.

In the present paper we introduce a phase operator formalism for quantum spins that,
through suitable limits, is related to both the work of Guérin et al [6] and classical physics. As
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an application, we provide a precise mathematical definition of the Villain transform, whose
original intuitive definition was flawed by boundary-value problems. A different insight into
the problem of unitary extensions of the phase operators follows naturally from our treatment.

We also discuss in some detail the application to spin-wave theory, pointing out some
examples in which the isometric representation is indispensable.

2. Mathematical formalism

In the approach of Guérin et al [6] a phase representation of the atom-field Hamiltonian due
to Bialynicki-Birula [2] is used. The authors are thereby able to construct an isomorphism
between the one-particle Hilbert space H = L2(R, dx), generated by the harmonic-oscillator
basis {|n〉; n = 0, 1, 2, . . .}, and the space Ln,θ defined as a subspace of L ≡ (S|1, dθ/2π),
the square-integrable periodic functions of the angle θ , i.e., on the circle S1, generated by the
basis functions {|k〉 = |eikθ 〉;−n � k < ∞}. That is,

L2(S|1, dθ/2π) = L ⊇ Ln,θ = [{|k〉 = |eikθ 〉;−n � k < ∞}]c, (1a)

where [· · ·]c denotes the closed linear span of (· · ·).
In the limit n → ∞ one obtains the whole space L2(S|1, dθ/2π). Identifying H as the

space of the one-photon mode of the electromagnetic field, we see this limit [6] to correspond to
a ‘mean-photon number’ going to infinity. By this isomorphism, the creation, annihilation and
photon number operators (a+, a and N = a+a) have the following representation as operators
acting on Ln,θ :

a+
n,θ =

√
n − i

∂

∂θ
eiθPn (1b)

an,θ = e−iθ

√
n − i

∂

∂θ
Pn (1c)

Nn,θ =
(

n − i
∂

∂θ

)
Pn, (1d)

where

Pn =
∞∑

k=−n

|eikθ 〉〈eikθ | (1e)

is the projector of L2(S|1, dθ/2π) onto Ln,θ .
When equations (1b)–(1d) are written for each mode (k, α) of the electromagnetic field,

where α denotes the polarization and k the wavevector, then the Fourier expansion of the
(quantum) vector potential operator in terms of plane waves ([15], (2.87), p 34) leads us to
interpret each θk,α in (1b), (1c) as the observable corresponding to the phase of the plane wave
in question in the sense of classical optics. The coefficients

√
Nk,α = [n − i∂/∂θk,α]1/2 in (1b)

and (1c)s correspond to the amplitude of the wave in classical optics, because (
√

Nk,α)2 =
Nk,α , which, by (1d), represents the number of photons in the mode (k, α), i.e., the intensity.
Finally, since −i∂/∂θk,α assumes positive and negative values, Nk,α = n − i∂/∂θk,α , i.e., the
photon number, is computed ‘around’ a large ‘mean photon number n’ [6], in agreement with
the semiclassical limit ([15], pp 35–37).

Because of (1) we clearly see that the phase operator ‘eiθ ’ is not unitary since its range
is Ln+1,θ �= Ln,θ . Thus the rigorous ‘phase representation’ (1b) and (1c) of the operators
a and a+ involves necessarily non-unitary phase operators e−iθ and eiθ . They are, however,
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even by definition isometric since they preserve the norm in Ln,θ : ‖f ‖2 = ‖e±iθf ‖2 where
‖f ‖2 ≡ ∑∞

k=−n |fk|2 withf (θ) ≡ ∑∞
k=−n fk eikθ .

Pegg and Barnett [5] pointed out that unitary phase operators may be defined on finite-
dimensional subspaces of H. The action of the corresponding approximate annihilation and
creation operators mimics that of the conventional annihilation and creation operators if the
state of interest is ‘physically accessible’, i.e., orthogonal to highly excited number states [5, 7].
Meanwhile the connection between the Pegg–Barnett [5] and the Bialynicki-Birula phase
operator [2] is known [7].

3. Quantum-mechanical spins and Villain transform

In this note we revisit the representation analogous to (1) for a quantum spin S := (Sx, Sy, Sz)

of finite spin quantum number S, satisfying the SU(2) commutation relations (we set h̄ = 1):

[Sx, Sy] = iSz, et cyclic. (2)

Identifying n in the above-mentioned formalism for photons with S, we obtain the basis phase
states in the (2S + 1)-dimensional subspaces of the unified Pegg–Barnett–Bialynicki-Birula
approach {(7), equations (15) and (16)}. It turns out, however, that in the quantum spin context
these phases have a natural physical interpretation in terms of the so-called Villain transform
[8]. In contrast to the photon case, the unitary phases are inadequate to describe the physics
of the system, as we shall see.

A quantum spin (2) does not behave like a particle, except under very special conditions
that underline the so-called diffusion approximation; see for example [8]. In several
applications, e.g., the classical theory of spin waves [9], it is important to devise a Hamiltonian
formalism for one and, hence, N < ∞ classical spins, so that we assume we are given a
function H (the Hamiltonian) of the classical spin components denoted here by a tilde S̃x, S̃y

and S̃z, and wish to find a canonical pair (q, p) in such a way that Hamilton’s equations
q̇ = ∂H/∂p and ṗ = −∂H/∂q hold. Considering S̃x, S̃y and S̃z as functions of the (yet to be
introduced q and p), the necessary and sufficient condition to be satisfied by (q, p) is that

{q, p} = 1 (3)

and that the Poisson bracket, in correspondence to (2), equals

{S̃x, S̃y} ≡ ∂S̃x

∂q

∂S̃y

∂p
− ∂S̃x

∂p

∂S̃y

∂q

= S̃z, et cyclic. (4)

Setting

q = S̃z (5)

so that q is the z-component of the classical spin and

p = −φ (6)

and where φ is the azimuth, it follows from (5) and (6) that

S̃x = (σ 2 − q2)1/2 cos p (7)

S̃y = (σ 2 − q2)1/2 sin p, (8)

where

σ 2 ≡ S̃2
x + S̃2

y + S̃2
z (9)
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is the classical value of the total spin. Then (3) is satisfied by construction and (4) may be
easily verified. It thus looks as if p and q describe a classical particle and indeed they do.

One may naturally ask what is the quantum-mechanical analogue of the above classical
picture. It was introduced by Villain [1] but, in order to give it a precise mathematical meaning,
it is necessary to discuss the boundary conditions in detail. Performing the classical canonical
transformation (q, p) 	→ (−p, q) in (5) and (6), we arrive at

ϕ = q̂ Ŝz = −i
∂

∂ϕ
≡ −i∂ϕ (10)

as canonically conjugate operators (in a formal sense) acting on the finite-dimensional Hilbert
space

L̃S,ϕ = [
ϕS

m(ϕ);−S � m � S
]
, (11)

where [ψm] denotes linear span of the functions ψm and the scalar product for ψS, φS ∈ L̃S,ϕ

is

(ψS, φS) =
∫ 2π

0
dϕψ

S
(ϕ)φS(ϕ). (12a)

Here we have set

ϕS
m ≡ (2π)−1/2 exp(imϕ) (12b)

with m integer or half integer, depending on S being integer or half-integer, as usual.
Let

S± = Sx ± iSy. (13)

Our version of the Villain representation is

S+ = U

√
S(S + 1) − Ŝz(Ŝz + 1) (14a)

S− = Ũ

√
S(S + 1) − Ŝz(Ŝz − 1) (14b)

where, on L̃S,ϕ ,

U =
{

eiϕ on
(
ϕS

S

)⊥

0 on ϕS
S

(15)

and

Ũ =
{

e−iϕ on
(
ϕS

−S

)⊥

0 on ϕS
−S,

(16)

where exp(±iϕ) are multiplicative operators with 0 � ϕ < 2π ; the operator Ŝz is given
by (10).

Polar decomposition. The key idea underlying our proof is that of a ‘polar decomposition’ of
an operator on Hilbert space. We refer to Reed and Simon [10] for the mathematical details
and quickly sketch the underlying arguments. The polar decomposition is the generalization of
z = exp(i arg z)|z| of a complex number z to an operator A where even its Hermitian conjugate
or adjoint A∗ cannot be expected to commute with A. The operator A∗A is a positive one so
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that we can take its (unique) positive square root |A| := √
A∗A. According to the definition

of |A| we get

‖|A|ψ‖2 = (ψ, |A|2ψ) = (ψ,A∗Aψ) = (Aψ,Aψ) = ‖Aψ‖2.

Let ker A denote the linear span of all vectors ψ with Aψ = 0 and let ran A, the linear span
of all vectors Aφ, be the range of A; if necessary, one can add their closure.

The above equation tells us two things. First, ker A = ker|A|. In general, ker A �= 0 and
H = ker|A| ⊕ ran|A|. Second, aiming at a polar decomposition of the form A = U |A| we
therefore cannot expect U to be unitary. Instead it is a partial isometry ‘unitarily’, i.e., 1-1,
mapping ran|A|, the orthogonal complement of ker|A|, onto ran A. That is, we define U by
U(|A|ψ) := Aψ and directly see it is a well-defined partial isometry from ran|A| onto ran A.
Finally, we extend U to all of H by putting it zero on {ran|A|}⊥ = ker|A|, the orthogonal
complement of ran|A|, and we are done.

In passing we note that in our case the Hilbert space H is the finite-dimensional space
C|2S+1 = [|m〉,−S � m � S], isomorphic to L̃s,ϕ as given by (11). Incidentally, there is an
explicit general formula for U ([10], chapter VII, problem 20): U = s − lim

n→∞ Afn(|A|) where
fn is defined by fn(x) = 1/x if x � 1/n and fn(x) = 1/n if x � 1/n.

The proof of (14)–(16) now follows. Let us write

S+ = U |S+|. (17)

S+ is trivially closed because it is defined on a finite-dimensional space. By the theory of
angular momentum,

|S+| = (S−S+)
1/2 = [S(S + 1) − Sz(Sz + 1)]1/2. (18)

Now H− ≡ ran|S+| = (ker|S+|)⊥ = [| − S〉, . . . , |S − 1〉] in terms of the orthonormal basis
{|m〉;m = −S, . . . , S} of eigenvectors of Sz in C| 2S+1

Sz|m〉 = m|m〉 (19)

Alternatively it may be expressed in terms of the operator Sz in L̃s,ϕ . We note U does map
H− into ran S+ = (ker S−)⊥ = [| − S + 1〉, . . . , |S〉] ≡ H+ because S− = S∗

+ by (13). From
(18) we also see that |S+| and Sz commute. Hence, from (18) and the relation

[Sz, S+] = S+ (20)

it follows that

[Sz, U ]|S+| = U |S+|. (21)

Now, again by (18), |S+| annihilates the vector |S〉, whence, from (21) and the uniqueness of
the polar decomposition (17), we obtain

[Sz, U ] = U on {|S〉}⊥. (22)

We thus define the basic commutation algebra of our system, which would be formally guessed
from (10), by

[Sz, U ] = U. (23)

By (19) and (22), and the fact that U is uniquely determined we obtain

U |m〉 = |m + 1〉, −S � m � S − 1 (24)

which proves (15) on L̃S,ϕ . By (18) and (19) and the isomorphism between C|2S+1 and L̃S,ϕ we
arrive at (14a). Equations (14b) and (16) may be obtained in a similar way.

We now come to (15) and (16). Since U follows |S+| in definition (18) of S+ it does not
matter for the definition of S+ how U |S〉 is defined. If we set

U1|S〉 = e+iα| − S〉 with 0 � α < 2π (25a)
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we arrive at a one-parameter family of unitary extensions U1 of U . Correspondingly, we must
set

Ũ 1| − S〉 = e−iα| − S〉 with 0 � α < 2π. (25b)

Adopting the representation (14) we need the basic commutation algebra (23) to show in
particular that S− as given by (14b) and (16) equals S∗

+ with S+ given by (14a). It is immediate,
however, that the unitary extensions (25) do not preserve the basic commutation algebra,

[Sz, U1]|S〉 = eiα(−S − S)| − S〉
= −2S eiα| − S〉 �= eiα|−S〉. (26)

Accordingly the only possible extension of U to the whole space that still preserves (23) is
U |S〉 = 0; similarly, Ũ |−S〉 = 0. We have thus proven (14)–(16). In the next section we
discuss in some detail an application to spin-wave theory, pointing out some examples in
which the isometric representation cannot be dispensed with.

4. An example from spin-wave theory

We consider a (for simplicity) linear chain of spins �Sl , of spin quantum number S, with periodic
boundary conditions after N spins, i.e., �Sl+N = �Sl . We assume that its dynamics is described
by the Heisenberg Hamiltonian

HN = −J

N∑
l=1

�Sl · �Sl+1 =
N∑

l=1

Hl (27)

with J > 0, corresponding to ferromagnetism. The ground states (g.s.) of HN are [13]

	N(±) =
N⊗

l=1

|±S〉l . (28)

In (27) we may write

Hl = −�ωl · �Sl = −1
2 (ω+,lS−,l + ω−,lS+,l + 2ωz,lSz,l) (29a)

with

ω±,l = ωx,l ± iωy,l (29b)

and

�ωl ≡ J ( �Sl−1 + �Sl+1). (30)

The Heisenberg equations of motion resulting from (29) are

dS+,l

dt
= iω+,lSz,l − iωz,lS+,l (31a)

dS−,l

dt
= −iω−,lSz,l + iωz,lS−,l (31b)

dSz,l

dt
= − i

2
(ω+,lS−,l − ω−,lS+,l). (31c)

We consider now very low temperatures and assume that we are close to one of the g.s. (28)
(an external magnetic field will realize that choice): we choose 	N(−). Thus,

Sz,l ≈ −S for all l. (32)
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The components Sl,+ and Sl,− are therefore of first order of smallness. From (31) and (32) we
obtain in first approximation:

dS+,l

dt
= −iJS(S+,l−1 + S+,l+1) + 2iJSS+,l (33a)

dS−,l

dt
= iJS(S−,l−1 + S−,l+1) − 2iJSS−,l (33b)

dSz, l

dt
= 0. (33c)

Writing, now, by (32), (14a) and (15),

S+,l = Ul

√
S(S + 1) − Sz,l(Sz,l + 1) ≈

√
2SUl (34a)

Similarly, close to g.s. 	N(+),

S−,l = Ũl

√
2S (34b)

requires (16b), otherwise S−|−S〉 = 0 is violated. As long as the states |+S〉 (in (34a)) and
|−S〉 (in (34b)) are accessible, albeit with small probability for low temperatures, neglecting
(15b) (respectively (16b)) will lead to errors, because the operators Ul (respectivelyŨl) are not
followed by the square roots as in (14a) (respectively (14b)) which are automatically zero on
|+S〉 (respectively |−S〉) . Thus, whenever approximations are performed on the square roots
in (14a) and (14b), which destroy their property of being zero at the boundary vectors, the
conditions of isometricity (15b) and (16b) are necessary in order to allow for the kinematic
interaction , i.e., the fact that the spectrum of Sz,l is restricted to the interval [−S, S]. Such
approximations occur often when ‘developing’ the mentioned square roots in power series,
assuming that only a few vectors around one of the ground states contribute in the calculation
of thermal expectation values. For models with strong planar anisotropy, when the ground state
is in the Sz,l = 0 subspace for all values of l, at very low temperatures, relevant configurations
do not involve large values of |Sx,i |, and practical effects of the kinematic interaction are
negligible for large S [16]. In this case, instead of (34) the relevant approximations would be
(with the g.s. consisting of all spins aligned in the x (or y) direction instead of (28)):

S+,l = Ul

√
S(S + 1) (35a)

S−,l = Ũl

√
S(S + 1). (35b)

In these cases the linear spin-wave approximation seems to be very good even for small values
of S: the exact energy of a spin one-half XY chain is only 5% off the spin-wave value [13],
and Anderson [17] has shown that the exact ground state energy of a Heisenberg spin one-half
antiferromagnet in the linear spin-wave approximation is only 3% off the exact value! In the
latter case the ground state for the spin-wave approximation is chosen to be the (classical)
Ising antiferromagnet. For such low values of S the states |+S〉 and |−S〉 have non-negligible
overlap even at low temperatures, and our remarks on the necessity of considering the kinematic
interaction grow considerably in relevance.

As an application of (34a) (the same result is obtained for (35a)), choose in (15a) the
angle φ = φl as

φl = ωt − kl. (36)

Putting (36) and (34a) into (33a), we obtain

iωJS
√

2S exp[i(ωt − kl)] = −iJS(exp −(ik) + exp(ik) − 2)
√

2S exp[i(ωt − kl)] (37)
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from which we get

ω = ωk = 2J (1 − cos k) (38)

i.e., the spin-wave dispersion relation. For antiferromagnets, this procedure is modified,
because the expansion is around the g.s. of the Ising antiferromagnet, and a linear dispersion
relation for small k results. The physical interpretation of the angle variable in the present
application is clear: it is the phase of the spin waves.

5. Discussion

The above considerations provide a new insight into the issue of the existence/non-existence
of a self-adjoint ‘phase operator’ in quantum mechanics. In contrast to the photon case, we
cannot take, as in [5], S arbitrarily large and restrict ourselves to ‘physically accessible’ states,
i.e., orthogonal to |S〉 since in the spin case S is a fixed number. That is, the fundamental
reason why unitary extensions are, in general, inadequate is that they describe the wrong
physics, i.e., they do not preserve the basic commutation algebra, which in our case is (23)!

We conclude with some remarks relating our construction to both the starting point, i.e.,
classical physics as described by (5)–(8), and the boson representation (1). In the classical
limit, the operators (13) and (19) tend [11] to c-number functions on the sphere

S+

S
−→
S→∞S̃+ = eiq

√
1 − p2 (39a)

S−
S

−→
S→∞S̃− = e−iq

√
1 − p2 (39b)

Sz

S
−→
S→∞S̃z = q. (39c)

The proper sense in which the above limits (39) are to be understood has been described
elsewhere [11, 12].

Division by S in (39) implies the vanishing of the commutators in the formal limit
S → ∞, as required in the classical limit. By a different contraction, viz., the so-called Lévy–
Nahas contraction [12], SU(2) goes over into the Lie algebra of the Heisenberg or oscillator
group (1): the operators (2S)−1/2S+, (2S)−1/2S− and S−1/2Sz tend (in a suitable sense [12])
to a+, a and (−1), respectively, where a+ (respectively a) are boson creation (respectively
annihilation) operators and 1 is the identify. Following the methods of [12] and [6], our phase
representation (14)–(16) may thus be easily shown to be related to the phase representation
(1). In our representation (14)–(16) any spin Hamiltonian H(S) may in fact be transformed
into a ‘particle Hamiltonian’ H(q̂, p̂). In section 4 we have illustrated this by an application
to spin-wave theory. In the latter there remains, however, the long-standing open problem of
rigorously estimating corrections to the spin-wave picture [13].

Another field of potential application is mesoscopic quantum tunnelling of the
magnetization from the point of view of Enz and Schilling [14].
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